The Symmetry Groupoid and Weighted Signature of a Geometric Object

نویسنده

  • Peter J. Olver
چکیده

We refine the concept of the symmetry group of a geometric object through its symmetry groupoid, which incorporates both global and local symmetries in a common framework. The symmetry groupoid is related to the weighted differential invariant signature of a submanifold, that is introduced to capture its fine grain equivalence and symmetry properties. Applications to the recognition and symmetry properties of digital images are indicated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A robust aggregation operator for multi-criteria decision-making method with bipolar fuzzy soft environment

Molodtsov initiated soft set theory that provided a general mathematicalframework for handling with uncertainties in which we encounter the data by affix parameterized factor during the information analysis as differentiated to fuzzy as well as bipolar fuzzy set theory.The main object of this paper is to lay a foundation for providing a new application of bipolar fuzzy soft tool in ...

متن کامل

On Symmetry of Some Nano Structures

It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for i≠j, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce...

متن کامل

Moduli of Coisotropic Sections and the Bfv-complex

We consider the local deformation problem of coisotropic submanifolds inside symplectic or Poisson manifolds. To this end the groupoid of coisotropic sections (with respect to some tubular neighbourhood) is introduced. Although the geometric content of this groupoid is evident, it is usually a very intricate object. We provide a description of the groupoid of coisotropic sections in terms of a ...

متن کامل

. Q A ] 2 7 O ct 2 00 6 A GENERALIZATION OF COXETER GROUPS , ROOT SYSTEMS , AND MATSUMOTO ’ S THEOREM

The root systems appearing in the theory of Lie superalgebras and Nichols algebras admit a large symmetry extending properly the one coming from the Weyl group. Based on this observation we set up a general framework in which the symmetry object is a groupoid. We prove that in our context the groupoid is generated by reflections and Coxeter relations. This answers a question of Serganova. Our w...

متن کامل

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015